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We investigate the conditions for the occurrence of the coexisting phases that exhibit singlet superconduc-
tivity and itinerant ferromagnetism arising from spin asymmetric bandwidths. The exact solution for a reduced
BCS pairing model with spin dependent bandwidths is used to determine the ground-state diagram as a
function of the coupling parameter, the total density, and the topology of the single-particle spectrum. A
spin-polarized superconducting state is obtained in the regime of large pair couplings with a strong bandwidth
asymmetry. The analysis reveals that, for such a type of ferromagnetism, small �large� values of the density of
states at energies close to the edges of the band enhance �hinder� the tendency toward a coexistence of strong
pairing correlations and finite spin polarizations.
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I. INTRODUCTION

Superconductivity or superfluidity occurs due to some
sort of attraction for quasiparticles responsible for pair for-
mation. When pair condensation enters into competition with
an intrinsic or induced source of depairing, ground-state
quantum configurations can be very different from the con-
ventional coherent states associated with a pure supercon-
ducting �SC� or superfluid phase. The search for novel quan-
tum states, in the presence of competition between pairing
and ferromagnetism, or population imbalance is nowadays at
the heart of an intense research activity within apparently
disparate areas, such as solid-state physics,1 dense nuclear
matter,2–4 and ultracold trapped Fermi atoms.5

The nature and the stability of a coexisting phase for su-
perconductivity and ferromagnetism strongly depend on the
mechanisms that generate the spin energy mismatch and the
pairing structure. For a conventional s-wave superconductor,
early investigation pointed the attention to a type of systems
where the spin imbalance is due to ferromagnetic �FM� cor-
relations between localized magnetic impurities.6–8 Here, the
interplay of superconductivity and impurity ferromagnetism
results in a configuration with an inhomogeneous spatial dis-
tribution of the spin density, either giving rise to a modulated
spin structure, the so-called cryptoferromagnetism,9 or to a
ferromagnetic spiral phase.10 In another context, inhomoge-
neous pairing configurations may occur for a spin imbalance
induced by the Zeeman effect in an external field. In the
so-called Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state,
the stability of the superconducting phase is possible beyond
the Clogston limit11,12 via a modulation in the phase or in the
amplitude of the order parameter.13,14 Since its proposal,
there have been a surge of activities in the search for exotic
FFLO-type phases in heavy-fermion materials,15,16 quark
matter,2 and ultracold polarized superfluids.17–19

If spin polarizations are due to intrinsic ferromagnetic
correlations, then the coexistence of superconductivity and
ferromagnetism turns out to be more difficult to survive.
Nevertheless, the experimental observation indicates the itin-

erant ferromagnetism as a possible candidate for a thermo-
dynamically stable state coexisting with superconductivity.
This is, for example, the case for the recently discovered
family of rutheno-cuprate oxides whose ferromagnetic RuO
planes are separated by superconducting CuO blocks.20 Here,
the ferromagnetic/superconducting quantum states form a
natural nanoscale multilayered structure including intrinsic
spin and charge channels between them. Difficulties in the
fabrication of single phase crystals prevent from an exhaus-
tive comprehension of how two collective orders adjust
themselves within such a system.

It has been widely accepted that the exchange of magnetic
fluctuations between electrons can induce superconductivity
in both the paramagnetic and ferromagnetic phases of
metals.21 Since magnetic fluctuations become large near con-
tinuous magnetic phase transitions, ideal candidates for this
phenomenon seem to be itinerant ferromagnets with a low
Curie temperature. In contrast to a much more common
phonon-exchange coupling, which usually leads to spin sin-
glet s-wave superconductivity, the magnetically mediated
pairing is believed to be the strongest in the triplet p-wave
channel. The general idea to look around a quantum critical
point for magnetically mediated superconductivity has
driven the discovery of a novel state of matters where col-
lective orders, which in principle are considered as antago-
nists, occur together. Indeed, this is the case for heavy-
fermion systems such as UGe2, URhGe, UCoGe, and
possibly ZrZn2.22–28

A noticeable feature in these ferromagnetic superconduct-
ors is that the same electrons are responsible for both ferro-
magnetism and superconductivity in contrast to the coexist-
ence with ferromagnetism resulted from magnetic impurities.
This has renewed the interest in the long-standing problem of
phase coexistence for singlet superconductivity and ferro-
magnetism and stimulated the search for new theoretical
models to get deeper insights into possible coexistences. A
BCS-type model of s-wave pairing, combined with a simple
Stoner-type model of ferromagnetism, was used to yield a
state with singlet superconductivity coexisting with ferro-
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magnetism within mean-field approximation.29 In this case, a
careful analysis yields that the coexisting configuration is a
metastable state with respect to the nonmagnetic supercon-
ducting state or the normal ferromagnetic one.30–33

A theoretical analysis in the context of exact solution
shows that the coexistence of pairing correlations and spin
polarizations may lie in mesoscopic systems such as metallic
grains.34–36 A model of BCS-type pairing and Stoner ex-
change interaction, known as the universal Hamiltonian, has
been introduced to describe the low-energy physics of small
metallic grains in the diffusive limit, with a large Thouless
energy compared with the single-particle mean-level
spacing.37,38 In such a finite-size system, according to the
strengths of the pair coupling and the magnetic exchange,
there occurs a small window around the Stoner threshold
where the ground state is a paired state with a finite spin
polarization.34 This parameter regime with the coexistence of
pairing correlations and a partial spin polarization may be
enhanced by applying an external magnetic field39 by intro-
ducing mesoscopic fluctuations40 or by switching on asym-
metric spin dependent bandwidths in the single-particle
spectrum.34 For grain systems, it should be noticed that the
coexistence of ferromagnetism and superconductivity has
been recently observed in Sn nanoparticles.41

It is worth mentioning that a weakened depairing strength
makes easier for the ferromagnetic order to compromise with
the superconducting correlations. One may search for differ-
ent microscopic mechanisms that lead to the itinerant
ferromagnetism.42 Another way to soften the depairing ef-
fects to form a coexistence of strong pairing correlations and
spin polarizations is provided by the inclusion of an antifer-
romagnetic spin-exchange coupling,35 which may also be in-
trinsically manifest in superconducting grains.37 In such a
case, the topological manipulation of the polarized and pair
spectrum via filling control and size variation can give rise to
quantum configurations with robust pairing correlations even
in the presence of a large magnetization.36

In this paper, we propose another route to stabilize a co-
existing superconducting-ferromagnetic phase in a mesos-
copic or bulk system by choosing proper types of the single-
particle density of states �DOS� and tuning the total particle
density, with ferromagnetic correlations induced by spin de-
pendent bandwidths. The analysis is focused on possible in-
homogeneous configurations in the energy space that may
allow the coexistence of strongly paired and ferromagnetic
polarized configurations. A key aspect in such a scenario is
the energy profile of the single-particle spectrum with an
effective pairing. We show that the level distribution in the
energy space plays a significant role in stabilizing quantum
configurations with strong pairing correlations and nonzero
spin polarizations. We demonstrate that the transition from a
nonmagnetic state to a spin-polarized paired state can be
tuned from first order to second order if pairing amplitude is
varied from weak to strong coupling. The analysis is based
on the comparison between the ground-state diagram of
model systems with different spectrum topologies resulted
from dimensionality or intrinsic inhomogeneous DOS. For
the type of ferromagnetism examined, the coexistence is
strengthened �weakened� if the DOS is smaller �larger� at the
edges of the band when compared to the values of the DOS

at the band center. The mechanisms related with the coexist-
ence are analyzed in detail so as to yield a general perspec-
tive as far as the realization of quantum paired ground state
with nonzero spin polarization is concerned.

The paper is organized as follows. In Sec. II we present
the model Hamiltonian, together with its symmetry proper-
ties, and sketch the exact solution of the model, briefly ex-
amining the role played by the number of single-particle en-
ergy levels. Section III refers to the study of the ground-state
diagram with the pair coupling and the asymmetry ratio of
the spin bandwidths as control parameters for a uniform
DOS. In particular, we carefully analyze the mechanisms re-
lated to the occurrence of weakly and strongly paired coex-
isting phases. Then, we discuss the effects induced by differ-
ent topologies of the single-particle spectrum in Sec. IV,
addressing the DOS for systems in one, two, and three di-
mensions. Finally, Sec. V is devoted to the concluding re-
marks.

II. MODEL: SYMMETRY PROPERTIES AND EXACT
SOLUTION

We consider a BCS pairing Hamiltonian with a discrete
single-particle spectrum,

H = �
j=1

�

�
�=+,−

w�� jn̂j� − g�
j,j�

cj+
† cj−

† cj�−cj�+. �1�

Here, w� is the parameter that controls the spin bandwidth
amplitude and g is the strength of the pair coupling between
two particles within the same level with opposite quantum
numbers �+,−� associated with the spin polarization, and �
is the total number of levels. The first term of Hamiltonian
�1� indicates the single-particle energy contribution with a
spin asymmetric spectrum, while the second part involves a
conventional BCS-type pairing interaction with zero total
momentum. The symmetric-band case is known as the re-
duced BCS model or the Richardson pairing model, which
has been widely used in nuclear physics,43 mesoscopic
physics,38,44,45 and trapped cold atoms.46 The spin dependent
bandwidths may have different origins. In solid-state phys-
ics, the Coulomb interaction can drive a ferromagnetic insta-
bility with a gain in the kinetic energy,47 thus leading to a
difference between the effective masses of the majority and
minority carriers. In complex oxides, a similar effect is in-
duced by the interplay of orbital and spin degrees of freedom
via the so-called double exchange mechanism.48,49 If one
considers ultracold Fermi gas, the asymmetry is readily in-
troduced by a mixture of atoms with unequal masses.3,50–52

In the present paper we focus on the interplay of pairing and
depairing effects while keeping in mind their relevance to the
coexistence of superconductivity and ferromagnetism. The
strategy we follow is to get a basic understanding of the
competition between superconducting and ferromagnetic
correlations by analyzing the mechanisms that control the
system properties for a uniformly distributed spectrum � j
=−��+1−2j�d /2, j=1, . . . ,�. Then, we concentrate on the
role played by an energy-dependent DOS with a structure
that refers to a tight-binding spectrum for one-, two-, or
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three-dimensional lattices with a dispersion �k� =−D /
�2r��icos ki, where i sums over the directions x, �x ,y�, or
�x ,y ,z� and r=1, 2, or 3 for different dimensions, respec-
tively. Let d denote the mean-level spacing while D=�d
yields the amplitude of the bandwidth. For convenience, we
introduce the bandwidth ratio �=w− /w+ to measure the
strength of the spin asymmetry, while the pair level spacing
2d is taken as the scale unit of energy with a consequent
constraint w++w−=2.

A. Particle-hole symmetry

The Hamiltonian presents a symmetry property that al-
lows us to reduce the computational cost. Indeed, when con-
sidering a symmetric dispersion with respect to the center of
the energy band �c, as � j −�c=−���−j+1−�c�, the model
Hamiltonian exhibits a particle-hole symmetry. Such cases
include both the uniform DOS and nonuniform spectrum
with the dispersion in the form of a cosine function of the
momenta in one, two, or three dimensions. As the reference
energy, the band center can be simply set to be the zero
energy point, i.e., �c=0. The particle-hole transformation,

cj� → c̄j�
† , n̂j� → 1 − n̂̄ j�,

renders Hamiltonian �1� to the form

H = �
j,�

w�� jn̂̄ j� − g�
j,j�

c̄j�−
† c̄j�+

† c̄j+c̄j− + C , �2�

where C=� j��w�� j + �g��−N�� is a constant term in the ca-
nonical ensemble for a given total particle number N. As one
sees, the Hamiltonian keeps the same form either in terms of
the particle creation and annihilation operators �cj�

† and cj��
or in terms of hole operators �c̄j�

† and c̄j�� up to an irrelevant
constant. Therefore, one only needs to limit the analysis at
densities below the half filling ��N / �2��=0.5 since the
case above is readily obtained by exploiting the particle-hole
symmetry consideration.

B. Exact solution

In this section, we briefly sketch the exact solution of the
quantum pairing problem. Hamiltonian �1� is exactly solv-
able both for symmetric43,53 and asymmetric spectra.34 Ac-
cording to the Pauli principle, singly occupied levels are
blocked from the pairing scattering. In the presence of Np
pairs over the unblocked levels �U with the remaining N
−2Np single particles in the blocked sector �B, the dynamics
of the system is composed of a pairing part and an unpaired
one, which are decoupled from each other. Based on such an
observation, one can show that a generic eigenstate of H is
expressed as a product state �=�B � �U, where �B

=	 j��B
cj�j

† 
0� and �U=	�=1
Np � j��U

cj+
† cj−

†

�w++w−�	 j−E�

0�. The corre-

sponding eigenenergy sums up the contributions from the
two parts,

E = �
�=1

Np

E� + �
�,j��B

w�	 j . �3�

The pair energy E� is determined from the Richardson
equations,43

1

g
+ �


=1�
���

Np 2

E
 − E�

= �
j��U

1

�w+ + w−�	 j − E�

. �4�

In order to accommodate a fully paired, i.e., an unpolarized
phase, we consider an even total number of particles N given
by N=2M, with M being the maximum total number of
pairs.

C. Role of the total number of levels: Crossover from
mesoscopics to macroscopics

Before presenting the results for the ground-state diagram,
we address the effects induced by varying the total number
of levels. One notices that the ground-state energy can be
analytically handled in a specific range of parameters to es-
timate the role of the total number of the single-particle lev-
els. Given a set of 2m blocked levels and �−2m unblocked
ones, the pairing energy of the ground state can be obtained
by performing a strong-coupling expansion in 1 /g,54

Em
U � − �M − m��� − M − m + 1�g + s1

M − m

� − 2m

− 
s2 −
s1

2

� − 2m
� �M − m��� − M − m�

�� − 2m�2�� − 2m − 1�g
, �5�

where sp=� j��U
��w++w−�� j�p. Note that we have taken into

account the level blocking from polarized particles. To facili-
tate our mechanism analysis in the Sections III C–III E, only
the expansion up to the 1 /g order has been kept. Equation
�5� gives a good approximation for values of � within a
range of ��0.75,��,35,36 with �=g� /D=g /d being the av-
erage relative pairing strength. Still, the convergence of
higher-order expansions can be extended up to ��1 /
.54

Numerically, we have checked the ground-state diagram
for different values of the total number of levels �
=100,200,300,¯. It is found that, at a given total particle
density �, the increase in the total level number does not
cause any qualitative change to the phase diagram in ��-��
plane. Such an observation can be understood as follows. In
the leading order of the expansion, after averaging over the
unbroken M −m pairs and neglecting a small term of the
order of 1 /�, we find that the pairing energy Em

U / �M
−m� /D�−�1−��1+ P��� is independent of the total level
number �. Here P=m /M is the pair breaking rate and the
energy is rescaled by the bandwidth amplitude D in accor-
dance with the competing single-particle energy w�� /D for
polarized configurations, which also shows no significant
changes as a function of the total number of levels. A similar
argument also applies to higher orders in the expansion. In
fact, the averaged pairing energy in the expansion is a func-
tion of the relative pairing strength �, the density �, the pair
breaking rate P, and the rescaled spectrum polynomial sp,

Em
U

�M − m�D
= F��,�,P,

sp

Dp�
� + o
 1

�
� . �6�

The 1 /� correction becomes negligible for ��100. The
other effects due to a variation in the level number appear in
the spectrum polynomial which approaches a constant inte-
gral value,
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sp

Dp�
=

1

�
�

j��U

�2� j

D
�p

→ �
−1/2

1/2

�2	�p�U�	�d	 .

Here, �U is the DOS for the pairing unblocked part. Then,
the increase in the level number gives rise to a variation that
is about the difference between the value of the integral and
the result of the summation over the energy levels. Still, this
change is insignificant as far as the qualitative features of the
ground state are concerned.

The above discussion demonstrates that different level
numbers bring to the same ground-state diagram qualita-
tively, with comparable values of the critical spin band asym-
metry ratio at a given pairing strength � and an assigned
filling �. It is worth pointing out that, for mesoscopic sys-
tems, the reduction in the size generally influences the level
number as well as the level spacing. In this case, a careful
analysis is required to consider the variation for � induced by
the size change.36,55–57

III. COMPETITION BETWEEN STRONG PAIRING
CORRELATIONS AND SPIN POLARIZATIONS:

A CONSTANT DOS

A. Ground-state diagram: Occurrence of a strongly paired
configuration with partial spin polarizations

At a given total density away from the half filling, the
mismatch between the Fermi levels of the two spin bands,
due to the bandwidth asymmetry, tends to induce a finite
magnetization. On the other hand, the attractive pairing in-
teraction favors the formation of pairs with zero total spin in
such a way that their number is maximized. The interplay
between these two tendencies leads to different ground-state
configurations. We presented a detailed ground-state diagram
in Fig. 1 at a given filling �=0.2 for a uniform spectrum. SC
and FM stand for the superconducting ground state without
polarization and the ferromagnetic state with the maximum
allowed spin polarization, respectively. Moving from SC to
FM, one obtains a coexisting region for paired and spin-
polarized particles, where the boundaries separate the area of
coexistence into subregion slices with different number of
broken pairs. In the diagram one can observe two distinct
regions: �i� region F with sparse boundaries, where the spin-
polarized particles reside around the uncorrelated Fermi
level; �ii� region B with dense boundaries, where the pair
breaking occurs at the bottom of the band. Such aspects can
be accounted for by inspection of the pair density distribu-
tion associated with different ground-state configurations as
presented in Fig. 2.

It should be noticed that region B is characterized by
strong pairing correlations that survive in the presence of
finite polarizations. This is reflected in both the rapidity of
boundary evolution and the pair distribution. An indication
of strong pairing correlations comes from the observation
that the boundaries in region B vary rapidly when the pair
coupling � increases, in a sharp contrast to their slow evolu-
tion in region F �see Fig. 1�. After the initial polarization at
SC/B boundary, the further polarizations in region B are still
very sensitive to the change in the pair coupling. This indi-

cates that the energy of pairing correlations is still playing a
dominant role in the energy cost for breaking pairs. A more
explicit evidence for the strong pairing correlations lies in
the pair distribution. For states in region B, there is a more
homogeneous energy distribution of the pair occupation over
all the unblocked levels �see Fig. 2�b��, while for configura-
tions in region F the pair density is completely unbalanced

FIG. 1. Detailed ground-state diagram in the plane of the pair
coupling �=g /d and the bandwidth ratio �=w− /w+ for a total den-
sity �=0.2 assuming a spectrum with 100 levels. Here, g gives the
pairing constant and d is the mean single-particle level spacing. The
bandwidth asymmetry becomes stronger �weaker� when �=0 ��
=1� is approached. SC �FM� labels the superconducting region
without any polarization �ferromagnetic region with a full polariza-
tion�. The boundaries separate the diagram into regions with differ-
ent numbers of broken pairs. The quick �slow� variation in the
dense �sparse� boundaries in region B �F�, with respect to the in-
crease in pair coupling, indicates a ground state with strong �weak�
pairing correlations coexisting with partial spin polarizations. The
inset is an enlarged view of the region where SC, F, FM, and B get
connected.

FIG. 2. �Color online� �a� and �b� represent the energy distribu-
tion of the pair density for the B- and F-type configurations at
different broken-pair numbers of m for �=0.2 over �=100 levels
�j=1, . . . ,��, respectively. The uncorrelated Fermi level is located
at j=20. The blocked sector corresponds to the energy window
where the pair density is zero, with levels singly occupied by po-
larized particles.
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between the unblocked part above the blocked sector and
that below �see Fig. 2�a��. This demonstrates that pairs in
region B are strongly correlated, in contrast to the weak pair-
ing correlations in region F, since stronger �weaker� pairing
will induce more �less� pair hopping over all unblocked lev-
els.

Unlike the small weight of the pair distribution above the
blocked sector in region F, the strong pairing correlations in
region B have resulted in a pair density that distributes com-
pletely above the blocked sector. This also leads to another
feature of region B that the single-level particle density
above the blocked sector can be even higher than that in the
blocked sector due to the bandwidth asymmetry. In fact, as
shown in case m=4 �solid blue line� in Fig. 2�b�, the particle
density 2� j close to the blocked sector is obviously larger
than that in the singly occupied blocked sector �one particle
per level�, i.e., 2� j �1. Here, � j is the pair density at a level
j in the single-particle spectrum. The pair density above the
blocked sector varies to match a necessary condition for the
ground state that the single-level energy for the pairing level,
2� j� j, is lower than a polarized level w+� j in occupation
competition. This allows the possibility for the aforemen-
tioned large pair density �2� j �1� as w+�1.

B. Evolution of the magnetization versus the spin band
asymmetry and the pair coupling: Softening of a magnetization

jump

To monitor the transitions from the unpolarized SC or
fully magnetized FM phase toward the coexisting regions, it
is useful to analyze the behaviors of the total magnetization.
The breakdown of the SC state is accompanied by different
types of transitions. As one can see in Fig. 3, at filling �
=0.2, for intermediate values of the pair coupling ��
��0.3,0.8��, the band asymmetry induced transition is first-
order-like with a jump in the magnetization �see the example
of �=0.5� at the SC/F boundary. The feature of the transition
is completely modified for larger pair couplings at the SC/B

boundary. The first-order transition gets softened to be
second-order-like, with the magnetization increasing gradu-
ally from zero �see the example of �=1.0�. It should be noted
that the softened magnetization in region B is essentially
different from the weak pair coupling regime. In fact, the
polarization for region B �as shown in case �=1.0 in Fig. 3�
does not show up until the strength of the band asymmetry
reaches some critical point, while the case �=0.1 in the
weak-coupling regime shows that the magnetization occurs
as the band asymmetry is switched on. As we shall discuss in
Section III C, the former case arises from the topological
change in the blocked spectrum, thus allowing the occur-
rence of strong pairing correlations, while, in the latter case,
the absence of magnetization jumps is due to the fact that the
pair coupling is much smaller than the level spacing, so it is
too weak to induce considerable interlevel pairing correla-
tions.

C. Mechanisms for weakly and strongly paired phase
coexistences

We have shown in Fig. 1 that there are two different re-
gions F and B where pairs are partially polarized. From the
exact solution, one can see that pairs are always correlated
via hopping over the unblocked levels as long as the satura-
tion magnetization is not yet reached such that there are
more unblocked levels for the unpolarized pairs to occupy. In
other words, a partially polarized ground state is always a
coexisting state of pairing correlations and ferromagnetic or-
der. However, the strength of pairing correlations in regions
F and B differs significantly from each other, being very
weak and very strong, respectively. One can readily see their
difference from the weight of pair distribution over high-
energy levels in Fig. 2, since stronger �weaker� pairing cor-
relations mean that pairs distribute more �less� homoge-
neously over all the unblocked levels. In this section we
address the mechanisms, which arise from the difference in
the topology of paired and unpaired spectra, which lead to a
dramatic change in pairing correlations from region F to re-
gion B.

1. Reduction in the pair-correlation strength for the ground
state with spin polarizations around the Fermi level

As discussed previously, the ground state in region F is
characterized by a spin polarization that develops around the
uncorrelated Fermi level. In this circumstance, it is possible
to show that the depairing tends to renormalize the pairing
correlations as soon as a nonzero spin polarization is formed.
To see this we shall analyze and compare the energy varia-
tions for the polarized and pairing parts.

The polarization of a pair is accompanied by a gain in the
single-particle energy due to the spin band asymmetry. This
energy gain is negative and tends to lower the total energy.
Once the negative-energy gain covers the cost for breaking
pairs, a polarization is induced. When the pair breaking oc-
curs around the Fermi levels as in region F, the number m of
the polarized pairs fill up the singly occupied sector from the
level �M−m+1 to �M+m in the spin-up band, thus providing a
blocked sector energy Em

B =w+� j=M−m+1
M+2m � j =−w+m��−N�d.

FIG. 3. Evolution of the magnetization as a function of the spin
band asymmetry ratio � at different values of the pair coupling �
for �=0.2 and �=100. Here m0 indicates the number of broken
pairs that occur at the boundary between region SC and regions
with partial polarizations. In the inset, the behavior of m0 is re-
ported as a function of � along the boundary line of region SC.
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On average, for each broken pair, the energy gain becomes
Em

B /m=−w+��−N�d, which is negative, as aforementioned,
because there are more levels than single particles ���N� at
a total density below the half filling. The energy gain is still
negative above the half filling, since N in this case becomes
the hole number after the particle-hole transformation, if one
adopts the above form of Em

B . Here in region F, it should be
noted that the average energy gain does not vary with the
number of polarized pairs.

Now, we turn to the analysis of the change in the strength
of pairing correlations after a spin polarization is induced.
Assuming m pairs are broken, then the reduction in the pair-
ing levels leads to an energy rise, �Em

U=Em
U−E0

U, in the un-
blocked part. The averaged energy cost per broken pair is
�Em

U /m, covered by the negative-energy gain in the occur-
rence of polarizations. Suppose that strong pairing correla-
tions still remain after a depairing from the fully paired SC
state, then the average cost for the pair breaking in the paired
sector has a leading order �Em

U /m= �Em
U−E0

U� /m���−m
+1�g+ N−2m

�−2m ��−N�d, as extracted from Eq. �5�. The first
term comes from the reduction in the pair hopping. The sec-
ond term is due to the rise of the pair kinetic energy, since
the blocked sector around the Fermi level is below the zero
energy point �c=0, at a filling ��0.5, so that relatively there
are more unblocked levels left for pair scattering above �c

than below �c. For a small broken-pair number m and an
intermediate value of �, the factor ��−N� in the second term
is much smaller than ��−m� from the first term, while for a
large m, the other factor N−2m

�−2m also reduces the influence of
the second term. Therefore, the pair hopping leading contri-
bution �g term� plays the dominant role, which decreases
with increasing values of m. Thus, the average energy cost
�Em

U /m becomes smaller when more pairs get broken, while
the afore discussed average energy gain Em

B /m is unaffected
by varying m. As a result, the maximum allowed number of
the broken pairs is energetically the most favorable. As long
as the pairing correlations are strong, this mechanism favors
the maximization of the number of the broken pairs until
only weak pairing correlations are left due to the large block-
ing effect. Therefore, in region F, the pairing correlations are
immediately renormalized down to a weak regime as soon as
the spin polarization becomes different from zero.

In such weak pairing correlations, the hopping of pairs
from levels below the polarized sector to the levels above it
is greatly hindered due to the large blocking effect occurring
to configuration F that has a blocked sector around the un-
correlated Fermi level. In this situation, intralevel couplings
dominate the pairing energy. Thus, instead of the aforemen-
tioned energy form in the case of a strong coupling, configu-
ration F with m broken pairs has a leading-order total energy
Em�� j=1

M−m2� j −g�M −m�+� j=M−m+1
M+m w+� j. Here, the first and

third terms are single-particle energies for pairs and polar-
ized particles, respectively. The second term is the intralevel
pairing energy, while we have neglected the interlevel pair-
ing part which contributes to higher orders.58 The energy
crossover Em−1=Em gives rise to the boundary between
neighbor subregions with m−1 and m polarized pairs,

w+
m−1,m �

2�M−m+1 − g

�M−m+1 + �M+m
= 1 +

�2m − 1� + �

� − 2M
. �7�

Note that the small factor 1 / ��−2M� here renormalizes
down the influence of the pair coupling �, which accounts
for the slow evolution of the boundaries in region F with
respect to �, as mentioned in Sec. III A.

2. Minimization of the blocking effect and emergence of a softly
polarized ground state with strongly correlated pairs

For states in region B, the spin-polarized particles occupy
the bottom of the band. The emergence of strong pairing
correlations in this region is closely related to this topologi-
cal feature of the blocking sector. Indeed, as we have dis-
cussed above, the presence of a blocked sector around the
uncorrelated Fermi level tends to weaken the pairing corre-
lations. The growth of the pair coupling in region B relative
to region F leads to a modification of the blocking sector by
shifting its position to the bottom of the band. This configu-
ration for the spin-polarized particles minimizes the blocking
effect on the paired part. Because there is a significant pair
hopping for larger values of � as in region B, the pairs are
distributed more uniformly over the unblocked levels.
Hence, the effective pair density per energy level gets
smaller than the single-particle one, and, as a result, there is
an optimization of the single-particle energy gain by filling
the lowest-energy levels with spin-polarized particles. Since
there is no unpaired sector to split the pairing part, the pair
hopping is not constrained at all. Thus, pairing correlations
get maximized.

Besides the maximum pairing correlations, the topologi-
cal character in the B configuration also brings about the
softening of magnetizations, in contrast to the initial polar-
ization jump at the boundary between regions SC and F. The
spin polarization in region B is activated in an almost con-
tinuous way, in the sense that the strongly correlated pairs
are broken one by one, as we have shown for �=1.0 in Fig.
3. Moreover, strong pairing correlations are still maintained
at each variation in the magnetization. In what follows, we
deduce such an effect by inspection of the leading order for
the total energy.

�i� Large polarization tendency from the pairing part. By
breaking m pairs from a fully paired state in region SC, the
total-energy cost associated with the unblocked part is about
�Em

U�m��−m+1�g+m�N−2m�d. The first term in �Em
U is a

consequence of the reduction in the pair hopping, the same
as it occurs in region F. The second term is due to the rise of
the center mass for the unblocked spectrum and it is different
from its counterpart in region F due to an unequal position of
the blocked sector. On average, for each broken pair, the
energy increase is �Em

U /m���−m+1��d+ �N−2m�d, and it
favors the largest allowed number of broken pairs because it
decreases when m grows, similarly to what happens in region
F.

�ii� Small polarization counteraction from the polarized
part. The energy cost for depairing is balanced by the energy
gain in the blocked spin-polarized sector Em

B =w+� j=1
2m � j

=−w+m��−2m�d. Here, in region B, the polarized particles
from the m broken pairs fill the energy levels from the lowest

YING et al. PHYSICAL REVIEW B 78, 104523 �2008�

104523-6



�1 up to �2m. Note that, on average, Em
B /m=−w+��−2m�d,

and thus each broken pair has a less negative energy if m
increases. Now, for the unpaired part, the smallest number of
polarized pairs is energetically favorable, which counteracts
with the maximum-m mechanism from the correlated pairs.

�iii� Reversion from large to small polarizations. To re-
verse the tendency of a large polarization from the pairing
part, the asymmetry w+ should be strong enough so that not
only the influence of the m terms in �Em

U /m is covered by the
counterpart in the polarized sector but also the average en-
ergy cost of depairing is reached. The crossover between the
two competing mechanisms occurs when −Em

B /m=�Em
U /m,

leading at the lowest order of pairing strength to the cross-
over from the SC state to the m-broken-pair configuration,
�m��m

0 =
w+��−2m�−2�M−m�

�−m+1 , while a higher-order analysis in-
cluding the 1 /� term in Eq. �5� yields �m��m

1 =�m
0 /2

+���m
0 /2�2−1 /3 after dropping the 1 /� terms. The one-by-

one pair polarization requires that �m is larger for less broken
pairs �otherwise the energy crossover for more pair breaking
occurs earlier with a polarization jump�. One can show that
this condition is fulfilled when w+ ��=w− /w+� is larger
�smaller� than a critical value for the spin asymmetry ratio.
Let us denote this critical point by �B

c . Correspondingly the
pair coupling is stronger than a critical value �B

c . Then, for
���B

c and ���B
c , the spin polarization in regime B is

driven by a one-by-one pair breaking. The critical values �B
c

and �B
c can be extracted from solving the equation ��m /�m

=0, which gives rise to

�B
c � �/�1 − �� ,

�B
c � �1 − 2�� + ��1 − 2��2 − 1/3, �8�

at the leading order. These expressions are valid for ���FB,
where regions F and B are disconnected, with �FB being
determined by Eq. �11� below. For the filling �=0.1, the
location of �B

c is marked in Fig. 4. For ���B
c and ���B

c ,
breaking more pairs becomes favorable, leading either to a
direct transition from the SC phase to the FM phase or to an
intermediate polarization jump in entering region F �see Fig.
4 at a given filling �=0.1�.

�iv� Strong pairing correlations maintained in growing
polarizations inside region B. The above analysis shows the
softened initial polarization at SC/B boundary. Deeper into
region B, with more broken pairs, it is still favorable for the
ground state to remain in the same topological structure of
the unpaired spectrum. When the polarization grows, the to-
tal pair density �U= �M −m� / ��−2m� over the remaining
�−2m unblocked levels becomes more dilute at a filling
below the half. Generally, the decrease in the total pair den-
sity also reduces the local pair density � j on each level. Then,
the pairs with an energy 2� j� j for a single level j get more
unfavorable when they are competing with the polarized par-
ticles to occupy the lowest levels. Therefore, unpaired par-
ticles tend to reside always at the bottom of the band when
more pairs are polarized. With this particular spectrum topol-
ogy maintained, the blocking effect is always minimized,
which guarantees the survival of the strong pairing correla-
tions when the polarization grows.

Since pairing correlations in region B remain strong after
the initial polarization, one can still carry out the strong-
coupling expansion in Eq. �5�. The energy crossover Em−1

U

+Em−1
B =Em

U+Em
B determines the boundary �m−1,m that sepa-

rates subregions with m−1 and m broken pairs. This yields

w+
m−1,m �

� − 2m + 2

� − 4m + 2
� +

2M − 4m + 2

� − 4m + 2
+

C1

�
, �9�

where C1=
��3+�2−2M�+2M2−4�−1�−�fm+fm−1�

3��−4m+2���−2m���−2m+2� and fm=4m3

−m2�6�+1�+m�3�2+�−4�. One gets the corresponding
asymmetry ratio via �= �2−w+� /w+ for the boundaries. In
contrast to the slow boundary evolution in weakly correlated
region F, the boundaries �m−1,m �or w+

m−1,m� here in region B
are sensitively affected by the change in the pair coupling �,
as mentioned in Sec. III A and shown in Fig. 1, providing a
sign of the strong paring correlations. After the initial soft-
ened polarization at SC/B boundary, the pair breaking occurs
in one-by-one steps, following �m−1,m��m,m+1. If one re-
duces the pair coupling �, these boundaries tend to converge
at �=�B

c . Equating �m−1,m=�m,m+1 and neglecting again the
1 /� terms, we get the same result for �B

c and �B
c as in Eq.

�8�.

D. Filling dependence of the ground-state diagram

At this point, it is interesting to investigate the evolution
of the ground-state diagram for different density concentra-
tions. The main boundaries that separate the SC and FM
phases from the coexisting regions are presented in Fig. 4,
showing the evolution with respect to the total density. The
fully paired SC phase expands when the density approaches
the half filling ��=0.5� due to the weakening of the spin

FIG. 4. �Color online� Evolution of the ground-state diagram as
a function of the total density with the total number of levels �
=100. For densities �=0.3 and �=0.4, the region corresponding to
the FM state shrinks to zero. At the half filling ��=0.5� the ground
state is always fully paired �SC�. Inset: the ground-state diagram vs
density for �=0. For comparison, we include the boundaries as
obtained by means of the analytical expansion of the total energy
�solid lines�.
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imbalance for the uncorrelated Fermi levels. At the same
time, regions F and B showing the coexistence, with weak
and strong pairing correlations, respectively, expand and re-
duce the area of FM stability until the quarter filling �
�0.25 is reached, where the fully polarized phase is not
stable anymore.

As marked for the case �=0.1 in Fig. 4, region B �F�
exists for a bandwidth asymmetry ���B

c ����F
c� at low

fillings. The critical asymmetry ratio �B
c is given by Eq. �8�,

while �F
c is approximated as

�F
c � 1 − 4� +

2�1 − ���1 − 2��
� + � − 1

�10�

by setting m=M in Eq. �7� and applying the relation �= �2
−w+� /w+. As one can see from the cases �=0.1 and �=0.2, a
feature in the evolution of the coexisting phases is that re-
gions B and F are separated at low densities but expand for a
higher filling until they get connected at a certain value �FB.
During this process, the boundaries, �B

c and �F
c , move closer

to each other. Then, �FB can be extracted by equating the
critical values �F

c =�B
c ,

�FB � �3 − �5�/4 = 0.19, �11�

where we have dropped off the 1 /�-order terms. As one sees
in Fig. 1, the case with �=0.2 is in close proximity to such a
critical point.

At higher values of the filling, another region will emerge.
We notice that the variation from state F to state B at �
=0.3 goes through an intermediate configuration that we
have denoted by I as in Fig. 5. Such a configuration is
marked by a blocked sector, with two Fermi surfaces similar
to that in state F, which shifts toward the bottom of the band
�but not yet reached�, while the spectral distribution for the
pair density presents a larger weight at energies above the

blocked part than in state F. The shifting of the blocked sec-
tor away from around the uncorrelated Fermi levels gives
rise to an essential difference from state F. In state F, the pair
occupation above the polarized sector completely comes
from the pair hopping from below. Such a pair hopping suf-
fers from the blocking effect. However, for state I, there are
some pairs above the blocked sector which do not come from
the hopping of low level pairs. These pairs will still doubly
occupy the levels above the blocked sector even if the pair-
ing interaction is turned off while the same singly occupied
levels are kept as in state I. Then, besides the weakened
blocking effect for pairs below the blocked sector due to
relatively larger values of the pair coupling �, the pair hop-
ping above is not hindered by the blocking effect at all.
Therefore, the pairing correlations in state I are also quite
strong if compared to state F.

Here, it is worth mentioning that state I has similar topol-
ogy to a breach-pair state in translationally invariant and iso-
tropic systems for which normal particles in momentum
space are surrounded by superfluid.3 While the breach-pair
state is usually unstable, here the exact solution confirms that
it can be the ground state in a narrow region of parameter
space. Since state I possesses two Fermi surfaces, a compari-
son with region B exposes a Lifshitz topological transition59

from two to one Fermi surfaces through the I/B boundary.

E. Special limiting case: �=0

A special point in the space of parameters is the asymme-
try ratio limit �=0. Such a situation is produced in the case
of a bandwidth with zero amplitude for the spin minority
carriers �localized levels� and a nonzero bandwidth for an
itinerant spin majority component. In real systems, it corre-
sponds to one of the possible classes of materials denoted as
half-metallic.60

To understand the mechanisms for the coexistence in this
regime, let us start with the absence of pairing. As the mi-
nority bandwidth is completely quenched ��−=0�, the single-
particle energy of a full pair �+�++�−�− is equal to that of a
polarized particle �+�+ in the spin majority band. Thus, there
is no difference for the energy of the unblocked part concern-
ing its position in the spectrum. Now let us turn on the pair-
ing interaction. On one hand, the pair density gets reduced
on a single level, due to the pair hopping over all possible
unblocked levels, and as a consequence, it gets smaller than
that of a singly occupied level. On the other hand, pairing
correlations get stronger when the blocking effect is mini-
mized by moving the polarized particles to the bottom of the
band. Both these two mechanisms drive the ground state into
a B-type configuration, for any given spin polarization, while
state I or F turns out to be always less favored for any values
of �. The dependence of the phase boundaries on the density
for this limiting case is presented in the inset of Fig. 4,
where, as one sees, only three states �FM, SC, and B� can be
realized and no F or I configuration sets in. One can get an
analytic approximation for the SC/B and FM/B boundaries
by setting m=1 and m=M in Eq. �9�. After neglecting the
1 /�-order terms, we obtain

�B,SC
�=0 � 1 − � + ��1 − ��2 − 1/3,

FIG. 5. Ground-state diagram as in Fig. 1 but for a total density
�=0.3. Another region with the coexistence of strong pairing cor-
relations and polarizations, region I, emerges between regions B
and F. The blocked sector for states in region I is located at an
intermediate position between those in states B and F. The Fermi
surface in states I has a similar topology to that in states F but with
a larger spectral weight in the pair density above the blocked sector.
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�B,FM
�=0 �

1 − 3� + ��1 − 3��2 − �1 − 2��2/3
1 − 2�

,

respectively. These equations provide a good estimation for
the boundaries in a range ��0.75, as shown by comparison
of the solid line �analytic� and the dot line �numeric� in the
inset of Fig. 4.

IV. EFFECTS OF THE NONUNIFORMITY IN DOS ON
THE COEXISTENCE OF SUPERCONDUCTIVITY

AND FERROMAGNETISM

In our previous analysis, we have extensively studied the
competition between superconductivity and ferromagnetism
with a spin bandwidth asymmetry for a constant DOS in the
single-particle spectrum. Such a hypothesis for the level dis-
tribution helps simplify the analysis in getting a physical
picture to understand the competing effects between pairing
correlations and spin polarizations. In this section, we turn
our attention to a problem that is closer to real systems by
modifying the single-particle spectrum and including the cur-
vature effects of the particle dispersion. Our study refers to
three different types of spectra that are taken from a tight-
binding structure of a lattice with only the nearest-neighbor
hopping in one, two, and three dimensions. The energy de-
pendence of � j is assumed to produce the related DOS whose
spectrum is a cosine function of the momentum, �k�

��icos ki.
For a nonuniform spectrum, the pairing strength still can

be described by �=g�� /D�, as D /� is the average value of
the level spacing. As we have discussed previously, it is the
competition of the level occupation between pairs and single
particles that are fundamental in determining different
ground-state configurations. A basic consideration shows that
the variation in the DOS does not affect the leading order of
the average energy per pair, �Eg /N↓� /D=−��1− �1+ P���, as
well as the competing single-particle energy w��. Therefore,
it may be expected that the qualitative features of the
ground-state diagram as well as the main ingredients we
have extracted from the analysis for the uniform spectrum
may still be valid for a nonuniform distribution. Neverthe-
less, it is of interest to evaluate the modifications in the
ground-state diagram concerning the size of the coexisting
region and the characteristics of the transition from one to
another region. In this context, a special emphasis is devoted
to the case of a highly inhomogeneous distribution for the
energy levels. It is also worth pointing out that, while the
general tendency in the variation in the DOS can be put in
correspondence with the dimensionality of the system due to
the dispersion under consideration, the picture may be gen-
erally applicable to other systems with a topologically affine
DOS, irrespective of the lattice dimensionality.

Before considering each case separately, we give some
general indications that are common to all the spectra ana-
lyzed. First, the spin-polarization mechanism arising from a
spin bandwidth asymmetry can induce a fully polarized
phase up to about quarter filling. Namely, above a critical
density �FM�0.25, the FM region disappears, irrespective of
the features of the single-particle spectrum. In the presence

of the bandwidth asymmetry, the energy difference between
the opposite spins becomes smaller when particles are filled
up to levels closer to the center of the band. The gain of the
single-particle energy in getting polarized therefore becomes
less sensitive to the asymmetry variation within the same
DOS and also to the change in DOS from different spectra
when the density gets closer to the half filling. Thus, the
main quantitative differences for an inhomogeneous spec-
trum, relative to the case of uniform DOS, occur in the small
density range �0,�FM�. Since more similarities to the uniform
case exist for higher densities �FM���0.5, we shall limit
our attention to compare low filling cases at two typical val-
ues of the total density �=0.1 and 0.2.

A. One-dimensional spectrum �Ècos kx: Weakening of the
phase coexistence

We start from the one-dimensional case with a normalized
dispersion 	�� /D=−cos kx /2. The ground-state diagram is
plotted in Fig. 6 for the main boundaries of the FM, SC, and
the regions of coexistence. Compared to the case of the uni-
form distribution at the corresponding filling in Fig. 1, both
the strongly correlated region B and the weakly correlated
region F shrink at the total density �=0.2. Region B at �
=0.1, as shown in Fig. 4, is very tiny for the homogeneous
case, while now for the one-dimensional DOS, it gets com-
pletely suppressed.

To get a simple picture for the shrinking of the regions of
coexistence in the ground-state diagram, we show the struc-
ture of the DOS, ��	��dn /d	=2� / �
�1−4	2�, in the inset
of Fig. 6. The DOS is very large and diverges to infinity at
the band edges, while it gets quite flat near the band center.
The conditions related to the modification, relative to the
case of a uniform DOS, of the competition between pairing
correlations and spin polarizations are different for the F and
B configurations.

Indeed, the combined effect of the low fillings and the
large DOS at the bottom of the spectrum makes the ferro-

FIG. 6. Ground-state diagram for the one-dimensional spectrum
��cos kx at two values of the total density: �=0.1 and �=0.2. In
the inset the density of states �DOS� is shown for the single-particle
spectrum.
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magnetic configuration more favorable and the coexisting
state difficult to survive. The particles at the bottom of the
band have the easiest tendency to get polarized due to the
large single-particle energy gain. At low fillings, most of the
particles can be accommodated at the bottom of the band,
thus yielding a similarly large single-particle energy gain for
all the polarized particles, if the depairing occurs in region B
so that the unpaired particles are located at the bottom of the
band. Once it becomes favorable to polarize one pair, all the
pairs can be broken at the same time due to their similar
tendency toward ferromagnetism. The result is a polarization
avalanche for all the pairs. Hence, in a very low filling limit
�=0.1, there is no region with a coexisting state having B
character. When the levels are more filled up from the bot-
tom for a higher value of the total density as for �=0.2, there
is no more space available at the bottom of the band and thus
a part of the polarized pairs have to fill the levels that are
higher in energy where a weaker pair-decoupling mechanism
exists. Region B with the coexistence emerges in this filling
range due to the softening of the spin-polarization strength,
though the region of coexistence is smaller than its counter-
part for the uniform spectrum. One can get similar results for
the case above the half filling, since the DOS at the top of the
band also goes to infinity. So, the large DOS at the edges,
including the bottom and the top, of the energy band
strengthens the polarization strength and thus reduces the
coexistence of strong pairing correlations and polarizations.

For configurations F, unlike the states in region B, the
spin-polarized pairs are removed from the Fermi level, where
the DOS is much smaller than that at the bottom of the band.
The polarization strength of the unpaired part is not so strong
as at the bottom of the band and the pairing part dominates in
the pair breaking behavior. As mentioned at the beginning of
Sec. IV, the averaged leading pairing energy �Eg /N↓� /D for
each pair is independent of the change in the DOS. This also
leads to the same initial polarization jump at the SC/F
boundary as discussed in Sec. III on the uniform DOS. The
formation of a polarization jump weakens not only the pair-
ing correlations but also the polarization strength for the un-
paired part, otherwise the jump would have been greater.
Still, the uncorrelated Fermi level is closer to the bottom of
the band, relative to the uniform DOS case, which still sup-
ports a relatively easier polarization even for the F configu-
rations. Then, region F shrinks in comparison with the uni-
form case.

B. Two- and three-dimensional spectra: The enhanced
coexistence of superconductivity and ferromagnetism

The analysis in the one-dimensional case shows that a
large DOS at the band edges makes it difficult to compro-
mise for the strong pairing correlations and the asymmetric
bandwidth induced polarizations at low fillings. Then we
speculate that a small DOS at the edges will enhance the
coexistence of superconductivity and ferromagnetism. We
find that this is indeed the case for the two-dimensional and
three-dimensional spectra. In fact, for both spectra, less level
distributions occur at the edges of the band than near the
center, while the area of the regions for the coexistence of

pairing correlations and polarizations is greatly broadened.

1. Ground-state diagram for the two-dimensional spectrum

A normalized two-dimensional single-particle dispersion,
given by 	=−�cos kx+cos ky� /4, yields a DOS,

dn

d	
= ��

0

arccos�4
	
−1� 1/
2

�1 − �4
	
 − cos�kx��2
dkx.

The number of states below a given energy � is proportional
to the area in the two-dimensional momentum plane, where
all states with the single-particle energy below � are in-
cluded. One can readily obtain the above DOS expression by
examining the change in this area if a small increase in � is
given. We plot the DOS profile in Fig. 8�c�. The detailed
ground-state diagrams are presented in Figs. 7 and 8 for fill-
ings �=0.1 and �=0.2, respectively, assuming a total number
of 200 levels. Compared with the uniform case, the region
size of the polarization-pairing coexistence is enlarged both
for regions F and B. Moreover, the diagram in Fig. 8 has a
broader F/B connection. A narrow region I now emerges be-
tween regions B and F due to the wider connection between
them.

Let us consider region B. From the analysis of the one-
dimensional case, it is now easy to understand the reason for
the enhancement of the coexistence. Here, for the two-
dimensional case, the DOS is smaller at the band edges while
it becomes larger for the energy levels close to the center of
the band. Such a tendency of the DOS variation is opposite
to the coexistence weakening in the one-dimensional case.
Then, despite of a strong polarization tendency at the band
edges, the bottom of the band with a smaller DOS has less
space to accommodate the polarized pairs. Filling up the
spectrum to higher levels reduces the magnetic energy gain
in polarizations. Thus, it requires a larger band asymmetry to
compensate the softening of the spin-polarization strength in
reaching the same magnetization amplitude as in the case of
the uniform spectrum. Such a condition leads to a wider
range of � for the coexistence. In other words, the softening

FIG. 7. Ground-state diagram for the two-dimensional spectrum
��cos kx+cos ky at a given total density �=0.1 for the total num-
ber of levels �=200.
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of the spin-polarization mechanism makes it easier for polar-
ized particles and strongly correlated pairs to coexist.

2. Ground-state diagram for the three-dimensional spectrum

We turn to a system with a normalized three-dimensional
band 	=−�cos kx+cos ky +cos kz� /6. At a filling �=0.1, the
coexisting regions F and B are of greater sizes if compared to
the two-dimensional case; now they are even connected via
the intermediate region I �see Fig. 9�. In the case �=0.2, the
coexisting regions are also more stable in comparison with
the uniform DOS case. When compared to the two-
dimensional case, a new distinct feature for the three-
dimensional case is observed: region B is separated into two
subregions B1 and B2, with relatively sparser and denser
boundaries, respectively. The same happens for region I, as
in the subregions I1 and I2. The subregions exhibit different
slopes in the magnetization, as shown by Fig. 10�c�.

The DOS for the three-dimensional case takes the form

dn

d	
= 6��

0

2
 �
0

2
 dkxdky/�2
�3

�1 − �6	 + cos kx + cos ky�2
,

which is shown in Fig. 10�d�. Going from the edges to the
center of the band, the DOS increases quickly from zero and
then suddenly turns to be flat. As discussed for the two-
dimensional case, a small DOS amplitude at band edges
strengthens the coexistence of pairing correlations and polar-
izations. This scenario is even better realized when at the
bottom of the band the DOS is suppressed to zero in the
three-dimensional case �for the two-dimensional case the
DOS at the band edge is still finite�. Therefore, for a low
density �=0.1, region B is highly enhanced. For a higher
filling �=0.2, the increase in the spin polarization leads to
the level occupations in the flat DOS zone. In the range of
such a uniform DOS, the tendency to the coexistence is not
so strong as at low polarizations, thus leading to a subregion
B2 similar to that in the uniform DOS case. The changeover
from a rapidly varying DOS to a flat one results in different
behaviors inside the coexisting regions. Since the coexist-
ence in subregion B1 is more robust than in subregion B2, it
tends to broaden the size of region with the coexistence.
Then, boundaries in regions B1 turn out to be sparser than
those in subregion B2 because wider boundary spacing
yields a broader region size for the coexistence. This results
in the unequal rises of the magnetization in the two subre-
gions �see Fig. 10�c��. A similar analysis also applies for the
subregions I1 and I2.

Region F is not much affected by the DOS structure. Al-
though the DOS is large for the two-dimensional case close
to the center of the band or has obvious curvature change-
over in the three-dimensional case, the strength for breaking
pairs does not change much due to the insensitive response
of the unpaired energy to the bandwidth asymmetry for lev-
els close to the center of the band. Moreover, the initial jump
of polarizations minimizes both the pairing correlations and
the polarization strength, as also mentioned in the one-
dimensional case. Hence, the behavior of the pair breaking in

FIG. 8. �a� Ground-state diagram for the two-dimensional spec-
trum ��cos kx+cos ky at a given total density �=0.2 for the total
number of levels �=200. Region I emerges between regions F and
B. �b� A zoomed view of panel �a� for regions F, I, and B. �c� The
DOS for the single-particle spectrum.

FIG. 9. Ground-state diagram for three-dimensional spectrum
��cos kx+cos ky +cos kz at a given total density �=0.1 for the total
number of levels �=200.
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region F is quite similar to the uniform DOS case, except for
some expansion in the region size.

V. CONCLUSIONS

In conclusion, we have exactly solved an extended ver-
sion of the reduced BCS model for particles that get paired in
the presence of a polarization arising from spin dependent
bandwidths. The evolution of the ground-state diagram has
been discussed in the full parameter space of the pair cou-
pling and the bandwidth asymmetry as a function of filling
for different types of spectrum topologies. Compared to
previous studies, the results indicate the possibility for a co-
existing state of strong pairing correlations and finite spin
polarizations. We point out that our analysis has been per-

formed within a general framework, which is intended not
only for bulk type but also for nanoscopic or mesoscopic
systems where the size may play a relevant role. The first
main outcome of the present investigation is the realization
of a strongly paired configurations with partial polarizations,
i.e., states B as well as states I, via a combination of filling
control and variation in relative pair coupling strength in the
presence of a strong bandwidth asymmetry. Practically, the
pair coupling strength may be varied either by choosing
proper materials or by changing the sample size.36 Further-
more, by investigating different single-particle spectra, we
have analyzed the influence of nonuniformity in the DOS on
the coexistence of strong pairing correlations and finite po-
larizations. Depending on the curvature and the amplitude of
the DOS, it is possible to understand the proper conditions
under which the coexistence of superconductivity and itiner-
ant ferromagnetism may be enhanced. Indeed, we have
shown that a large value of the DOS at the edges of the band
is in general detrimental to the coexistence induced by the
bandwidth asymmetry. Otherwise, for a band spectrum with
a lower �or zero� amplitude of the DOS at energies close to
the edges, the region where strong pairing correlations and
spin polarizations coexist in the ground state is significantly
enhanced.

As concluding remarks, we underline that, while our re-
sults do not correspond to specific available experimental
data, there are material systems that may be directly con-
nected to the model Hamiltonian used in our analysis. As
extensively discussed throughout the paper, the key points of
our study concern the realization of spin-polarized supercon-
ducting states with strong pair correlations induced from the
spin-split bandwidths �effective masses� and the suitable to-
pology of the density of states. These elements can be used
to connect our investigation with some observations related
to specific material systems. Indeed, the observation of spin
dependent masses induced by a magnetic field in heavy-
fermion superconductors as CeCoIn5 �Ref. 61� and CePd2Si2
�Ref. 62� makes these materials potential candidates to match
the microscopic conditions of the examined model Hamil-
tonian. Here, the spin dependence of the quasiparticle mass
is induced by the applied magnetic field and arises from the
interplay between strong electron correlations and spin po-
larization as discussed within different theoretical
approaches.63–65 Of particular interest for our study is
CeCoIn5. Specific heat measurements revealed a second-
order phase-transition line within the superconducting state,
providing evidence for a superconducting phase at the high-
field-low-temperature side of the phase diagram66,67 where
the amplitude of the spin-split masses is significant. Experi-
mental indications point toward the realization of a FFLO
state in this range of field and temperature even if several
unexpected features have been detected as, for example, the
remarkable dependence on the magnetic field and tempera-
ture of the phase boundary between the putative FFLO and
non-FFLO states.16 Since it has been shown that the applied
field modifies the ratio of the spin dependent effective
masses, we speculate that state B or I obtained in our analy-
sis of the ground-state diagram, with a second-order transi-
tion at SC-B or SC-I boundary, can be considered for the
phase found in the field-temperature phase diagram of the
CeCoIn5.

FIG. 10. �a� Ground-state diagram for the three-dimensional
spectrum ��cos kx+cos ky +cos kz at �=0.2 for the total number of
levels �=200. The variation in the magnetization in regions I and B
exhibits two different subregions that are indicated as I1, I2 and B1,
B2, respectively. �b� A zoomed view of the panel �a� with a focus on
the area where regions F, I, and B get connected. �c� An example of
evolution for the magnetization Mz versus the bandwidth asymme-
try at a pair coupling �=0.58. The band asymmetry goes through
the I1, B1, B2, and FM regions, showing a changeover at B1/B2
boundary. �d� Representation of the DOS for the three-dimensional
spectrum.
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Other cases, in which our analysis can find application,
refer to hybrid systems like heterostructures made of junc-
tions with interfaced superconductors and half-metallic ma-
terials as for NbTiN /CrO2 /NbTiN samples.68 Here, a giant
proximity effect is observed by detecting a supercurrent
flowing through the half-metal even if the size of the CrO2 is
much larger than the expected proximity leaking distance.
Our analysis indicates that the coexistence of strong pair cor-
relations and ferromagnetism is indeed favored in proximity
of the half-metallic limit, where one type of spin carrier gets
insulating �zero bandwidth� and the other one is metallic.
Thus, the configurations that are stable in this part of the

phase diagram may play a role at the interface between a
singlet-type superconductor and a half-metal ferromagnet,
which in turn influences the proximity effect through the way
the pairs adapt themselves within the half-metallic electron
liquid.
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